“Share your data, keep your secrets.”

Irini Fundulaki

Daniel Lieuwen Arnaud Sahuguet

{fundulaki,lieuwen,sahuguet}@lucent.com

Bell Labs Research, NJ, USA

Guillaume Giraud

Nicola Onose

Nicola Pombourcq

Ecole Polytechnique, Palaiseau, France

{giraud,onose,pombourcq}@olytechnique.org

ABSTRACT

The next generation of services will require access to
user profile information located on various networks.
What’s new is that this information needs not only to be
integrated but also accessed in a selective fashion that
respects the user’s privacy concerns.

In this demo proposal we present a framework that
performs the integration of distributed XML user profile
components in a privacy-conscious manner. The key
idea is to use a single language (XSquirrel) to deal with
both data integration and access control and rely on
language rewritings to statically process queries.

The demo will highlight the new features of our frame-
work for some real life scenarios that involve XML user

profile information.

1. MOTIVATION AND OVERVIEW

The next generation of services will not be restricted
to the boundaries of a given network. This is called
convergence! Land-line telephony, wireless telephony,

instant messaging, Web, etc. now form a converged net-

work where applications can be deployed. An example
of such an application is the Selective Reach Me (SRM)
which makes it possible for me (resp. other people) to
reach people (resp. me) wherever they are (resp. I am).
On the caller side, instead of calling a specific device,
I call a person and I let the application figure out the
best way to contact her. On the callee side, I want to
specify who can contact me, on which device, when and
for what purpose, etc. For instance, I may want to have
the following policy: people in my address book under
category “business” can reach me on my office phone
during working hours; family members can reach me on

my cell phone anytime; others are directed to voice-mail.

To make the above scenario possible, it becomes crit-
ical to provide a ubiquitous access to user profile in-
formation which (a) is distributed across networks and
devices and (b) consists of static (e.g. identity informa-
tion) and dynamic data (e.g. IM and wireless presence)
and cannot be “warehoused”.

Probably, even more importantly, is the critical need
to control the way this information is accessed. The
user is willing to disclose part of her profile information

to certain users, but only if she can be sure that her

information is not accessible by unauthorized parties.
The problems with the current architecture are that: (i)
user profile information lives in network components
with different protocols, data models, APIs. Conse-
quently, applications need to deal with such hetero-
geneities which make the aggregation of information
hard (if not impossible) and very expensive; (ii) access
control is all-or-nothing and is spread across the var-
ious sources. For instance, access to my address book
requires a password. If I want to share my address book,

I need to give this password to other people or applica-

tions.

2. OUR APPROACH

Numerous industry initiatives like Microsoft Passport
[12] and Liberty Alliance [8] have been started to ad-
dress the issue of user profile data management. We
describe here the GUPSt®r system which is motivated
by the 3GPP Generic User Profile (GUP) effort [1], a
telecom-based initiative that aims to aggregate user pro-

file information relevant to network operators.

2.1 GUPster in a nutshell

The main idea behind GUPSt®' is to build an XML-
based mediator that acts as a centralized meta-data man-
ager to handle highly distributed user profile XML data.
The mediator acts as the single point of access between
data producers and data consumers. GUPSteT aims to
be the broker for user profile components which are (a)
distributed across networks and (b) their distribution
varies on a per user basis. Its role is two-fold: data
integration and access control. This is the major differ-
ence with traditional mediator-based systems that only

address the former.

2.2 Datalntegration in gupster

The backbone of the GUPSI' mediator is an XML
schema which describes user profile components and is
defined by standard bodies.

The integration aspect is rather straightforward: our
mediator needs to store mappings between user pro-
file components (i.e. subtrees defined on the mediator
schema) and data sources.

Queries are user-centric: a user (or an application run-
ning on behalf of her) (requester) initiates a request for
a part of a user’s profile data (resource), the latter ex-

pressed in terms of the mediator schema.

3. ONE LANGUAGE TO RULE THEM
ALL

The key component behind GUPster is the XSquirrel
language (see [6] for a full description of the language).
Our requirements in GUPSt are the following: we need
a language that can express (1) views over XML doc-

uments for integration (i.e. mappings between sub-

documents of the user profile document and remote sources),

(2) views over XML documents to describe access con-
trol (i.e. association between sub-documents and boolean
predicates) and (3) queries over these documents.

Note that, for both views and queries, we do not
need/want to perform any restructuring on the docu-
ment (there is no need for fancy joins). We only need
to be able to specify what parts of a given document we
need to keep. This is similar to the notion of projected
documents introduced in [9)].

The reason for “yet another language” for XML comes
from the limitations of XPath and the high complexity
of XQuery. XPath is very convenient when one or more
subtrees of a given document need to be returned. How-

ever, using XPath, it is not very convenient to ask for

parts of these subtrees. The second problem is that

XPath returns nodes and not documents.

The problem with XQuery [3] is that it is too rich and
powerful to reason about. Moreover, it requires one to
deconstruct the document (creating bindings) and then
reconstruct it, which means that we need to write rather

complicated queries.

4. GUPSTERINACTION

We now provide an end-to-end example that shows
how the access control rules and mappings are combined

to answer an incoming query.
MyP/rofiIe

- R
= MyCalendar R

MyAddressBook S o
- -

’ T WorkEvent SocialEvent MyPresence

-
ProfessionalContact PersonalContact ~
S <. Time/Date ¢ Description
-’ - ap - X .
FN LN WorkAddressFN LN HomeAddress -0¢ation presence Bddies

-
JabberPresence

- Y - VY M
Location Phone Fax Location Phone Fax Group

- : K] -
Street City State Country

Figure 1: The GUPSt®'schema

A simplified version of the schema we will use for the
demo is presented in Fig. 1. In Fig. 2, we have gathered
the mappings, access control rules and queries we use

for this example.

Suppose that user Irini (or an application running
on behalf of her) issues a query for Arnaud’s address
book, calendar information and mobile presence (from
the HLR) during working hours. The resource part
of the query is defined as the XSquirrel expression g1
in Fig. 2. The syntax looks very similar to XPath with
the added # operator to follow multiple paths at the
same time. The access control rules Ri, R> and R3
are relevant to the query (their requester part matches)
and the condition is true. Moreover, we use the ’\’ axis

instead of the / XPath axis to avoid any confusion.

GUPSter first performs access control by trying to find

HLRPresence

the relevant access control rules. Then, for these rules
it tries to rewrite the incoming query’s resource part
into an expression “compatible” with the resource part
of the access control rules. From this point on, we use
the terms query and access control rule to refer to their
resource part.

For instance, query ¢1 asks for the AddressBook. But
access control rule Ry only makes the PersonalContact
under AddressBook accessible. For WorkEvent under
MyCalendar requested by g1, only the Description is
accessible. The presence information (HLR under MyP-
resence) is not accessible (there exists no access control
rule that specifies otherwise). Hence, by applying the
relevant access control rules, query g1 gets rewritten into
query g (see Fig. 2). Note that GUPS tries to find the
“biggest” query permissible by the access control rules,
as opposed to denying the query if it is not exactly per-
mitted.

The next step is to perform data integration, i.e. map-
ping parts of the query to the various data sources that
actually hold the data (by using the data mappings).
From g2, we can see that we need to access sources my.-
yahoo.com and my.netscape.com (mappings M> and M3 re-
spectively) to get PersonalContact. In order to get the
calendar information we need to access source my.lucent.-
com (mapping Mi). After query rewriting, we have the
following plan: query gs will be sent to source my.lucent.-
com while query g4 will be sent to sources my.yahoo.com
and my.netscape.com. Note that all of this has been done
statically, without accessing the document itself.

In the final step, the various components obtained
from the sources will then be merged to produce the

final result returned to the requester.

5. OUR PROTOTYPE

Mi; \MyProfile\(MyAddressBook)\ ProfessionalContact # MyCalendar\ WorkEvent) — my.lucent.com
M \MyProfile\(MyAddressBook\ PersonnalContact # MyCalendar\ Social Event) — my.yahoo.com
M3\ MyProfile\ MyAddressBook\ PersonnalContact — my.netscape.com

Data Mappings for user Arnaud

Rule | Requester | Resource | Condition

Ry Irini \ MyProfile\ MyAddressBook\ PersonalContact

Rs Irini \ MyProfile\ MyCalendar\ WorkEvent\ Description

R3 Irini \MyProfile\ MyPresence\ MyJabberPresence 9am < t < 5pm

Access Control Rules for user Arnaud

g1 \MyProfile\(MyAddressBook # MyCalendar # MyPresence\ HLR)

g2 \MyProfile\(MyAddressBook\ PersonalContact # MyCalendar\ WorkEvent\ Description)
g3\ MyProfile\ MyCalendar\ WorkEvent\ Description

gs \MyProfile\ MyAddressBook\ PersonalContact

Queries

Figure 2: Mappings, access control rules and queries (as XSquirrel expressions)

Our current prototype is implemented in Java. It We use the Axis framework® to package the various

performs the rewriting for both data integration and
access control, using some primitive operations for our
XSquirrel language (intersection, union, and composi-
tion of trees). Mappings and access control rules are
both stored in a relational engine.

(1) (2) (3) (4)
/™

(Qo (UACR)) o M, K\
Q—» —> Qo (U ACR) ~
/™
(Qo (U,ACR)) o M, el

Access control Rules Data Mappings

AN

Figure 3: GUPSter Processing Flow

The processing flow is illustrated in Fig. 3. First we
identify the relevant access control rules, and then we
compose the query with their union. In order to evalu-
ate the condition part of access control rules, our proto-
type packages access control decisions into XACML [11]
decisions and invokes the Sun XACML [13] implemen-
tation (1). We then compose the rewritten query with
relevant mappings to produce a query plan (2). Indi-
vidual queries are sent to the various data sources, as
SOAP messages (3). If needed, components retrieved

from the various data sources are merged together (4).

data sources and the GUPSter server itself as web ser-

vices.

‘We currently support the following data sources, which
we think are good representatives of different networks.
¢ address book and calendar information (from Microsoft
Exchange, via WebDAV protocol);

e presence information (from Jabber server);
¢ personal information (from Lucent LDAP directory);
e presence and location (simulated from HLR data).

We have written wrappers to export the data of the

above sources as XML data, compliant with the GUPSter

schema.

6. OVERVIEW OF THE DEMO

For this demo, we will demonstrate:

e how to register user profile components (coming
potentially from multiple sources) in the GUPster
server.

e how to add/delete/modify access control policies

(using the provisioning client presented in Fig. 4).

Yhttp://ws.apache.org/axis

e how the meta information dictates the result of
incoming queries, based on registered user profile
components, access control policies, and request
context (identity of the requester, other parame-
ters such as time of the day).

e how GUPster can be used by applications and ser-

vices via the SOAP interfaces.

=gl

& GUPster Client session - logged in as sahuguet

File config Help

whose data you wart to access 7

Ig\raud Iread LI

ask GLPster Result

1 e B
L] hMyldertity
=] AddressBook

=] Contact

bt yion want to do;

- @ Infarmalblame
-] Commonblame
-] IDPPEmploymentldertity
El-__| IDPP&ddressCard
|DPPLd Type
-] Address
F- | MsgCortact
- | Facade
-] IDPPDemographics
- Source
-] Calendar
- MyPreferences

HI R Presence |

FESOUrce:
by Gup

Figure 4: The GUPSt®' rule provisioning client

More specifically, we will present 3 possible instances

of GUP data consumers that we have built:

e personal web portal implemented on the server-
side, including personal information, calendar, pres-
ence, locale (e.g. favorite locations, preferred lan-
guage, currency). For instance, our personal por-
tal can display weather forecast expressed in the
preferred way (language, temperature units).

e personal web portal implemented on the client-
side (making SOAP calls from Javascript using the
Mozilla SOAP API).

e A device with limited capabilities (e.g. PDA or
cell phone) using GUPster to synchronize some

user profile information.

7.

[1]

2]

(3]

[4]

[6]

[10]

[11]

[12]
[13]

REFERENCES

The Third Generation Partnership Project.
http://www.3gpp.org.

E. Bertino and E. Ferrari. Secure and Selective
Dissemination of XML Documents. ACM
Transactions on Information and System Security,
5(3):290-331, 2002.

D. Chamberlin, D. Florescu, J. Robie, J. Simeon,
and L. Stefanescu. XQuery: A Query Language
for XML. http://www.w3.org/ TR /xquery,
February 2001.

J. Clark and S. DeRose (eds.). XML Path
Language (XPath) Version 1.0. W3C
Recommendation, November 1999.
http://www.w3c.org/TR/xpath.

E. Damiani, S. De Capitani di Vimercati,

S. Paraboschi, and P. Samarati. A Fine-Grained
Access Control System for XML Documents.
ACM Transactions on Information and System
Security (TISSEC), 5(2):169-202, May 2002.

I. Fundulaki and A. Sahuguet. Privacy Conscious
User Profile Data Management with GUPster.
Technical report, Bell Laboratories, Lucent
Technologies, 2003.

A. Gabillon and E. Bruno. Regulating Access to
XML Documents. In Proc. of the 15th Annual
IFIP Working Conf. on Database and Application
Security, July 2001.

Liberty Alliance Project.
http://www.projectliberty.org.

Amelie Marian and Jerome Simeon. Projecting
XML Documents. In Proceedings of the
International Conference on Very Large
Databases, Berlin, Germany, September 2003.
Makoto Murata, Akihiko Tozawa, and Michiharu
Kudo. XML Access Control using Static Analysis.
In Proc. of the ACM Conf. on Computer and
Communications Security, Washington, DC, USA,
October 2003. To appear.

eXtensible Access Control Markup Language.
http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.
Microsoft Passport. http://www.passport.net.
Sun’s XACML Implementation.
http://sunxacml.sourceforge.net/.

